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Abstract 

   

     Analysis has been made for the curvature effects on the MHD and heat transfer peristaltic flow 

of an incompressible Johnson-Segalman fluid in a channel. The flow problem is first reduced in the 

wave frame of reference and then solved after employing the long wavelength and low Reynolds 

number approximations. Expressions for stream function, magnetic force function, temperature and 

concentration fields are derived. The effects of emerging parameters in the obtained solutions are 

plotted and analyzed. 
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1. Intoduction 

 

      The peristaltic transport phenomena have immense theoretical and technical applications in 

physiology and industry, for example in biomedical engineering, pumping of blood in dialysis and in 

industries, and transport of toxic liquid in nuclear industry. It also occurs in the transport of urine 

from kidney to bladder, chyme motion in the gastrointestinal tract, blood transport in capillaries, 

intra-uterine fluid motion, movement of ovum in the female fallopian tube, etc. Latham [1] and 

Jaffrin and Shapiro [2] initially discussed the process of peristalsis in tube/channel. Keeping in mind 

the importance of processes of hemodialysis and oxygenation, several researches were conducted on 

the study of heat transfer in peristalsis. Radhakrishnamacharya and Murty[3] investigated the 

characteristics of heat transfer in the peristaltic flow through a non-uniform channel. Vajravelu et 

al.[4] considered the peristaltic flow in an annulus by using the approximation of long wavelength. 

Srinivas and Kothandapani [5] examined the heat transfer in peristaltic flow in an asymmetric 

channel. Heat transfer characteristics in the hydromagnetic flow with peristalsis were explored by 

Mekheimer and Elmaboud [6]. Srinivas et al.[7] studied the features of convective heat and mass 

transfer in the peristaltic transport through an asymmetric channel. Influence of chemical reaction and 

space porosity on the hydromagnetic peristaltic transport in an asymmetric channel was reported by 

Srinivas and Muthraj [8]. Nadeem and Akbar [9] considered the magnetohydrodynamics (MHD) 

peristaltic motion with heat and mass transfer. Induced magnetic field influences on peristalsis were 

described by Elmaboud [10]. Tripathi et al.[11] analyzed the peristaltic motion in gerenalized 

Burgers’ fluid. Further, Tripathi [12] examined the peristaltic transport of chyme movement in small 

intestine. 

     There is a subclass of differential type fluids known as Johnson-Segalman fluid. This fluid model 

is one subclass of non-Newtonian fluids which can explain the ‘‘spurt’’ phenomenon. The term 

‘‘spurt’’ Has been used for the description of large increase in the volume to a  small increase in the 

driving pressure gradient. Hayat et al. [13] examined the peristaltic flow of Johnson-Segalman fluid 

in a planar channel. Elshahed and Haroun [14] studied the peristaltic motion of Johnson-Segalman 

fluid under the effect of magnetic field. The peristaltic transport of Johnson-Segalman fluid in an 

asymmetric channel has been discussed by Hayat et al. [15]. Wang et al. [16] studied the peristaltic 

motion of Johnson–Segalman fluid through a deformable tube. Nadeem and Akbar [17] studied the 

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 
ISSN 2229-5518 42

IJSER © 2017 
http://www.ijser.org

IJSER

mailto:alikammal82@gmail.com
mailto:ahm6161@yahoo.com


effects of induced magnetic field and heat and mass transfer on peristaltic flow of Johnson-Segalman 

fluid in a vertical asymmetric channel. 

     Peristaltic transport in curved channel is another important area of research which is not yet given 

a due attention. All the above mentioned studies have been undertaken in straight channels/tubes. 

Flow over curved channels is relevant to many industrial, biological and environmental applications. 

Examples are the spreading of pollution in a fjord and the wear experienced by pipes going through 

rough oceanic terrain. It is known that shape of most of the physiological tubes and glandular ducts is 

curved. Laser guiding in curved plasma channels have important applications such as an efficient 

circular x-ray laser medium, optical synchrotrons, laser accelerators and harmonic generators. Flow 

characteristics during flood associated with sediments transport is an application of curved geometry 

from engineering point of view. Micro heat exchangers involve curved channels where goal is often 

to increase the heat flux while limiting the pressure drop. Ali et al. [18] discussed the peristaltic flow 

of viscous fluid in a curved channel. Later on, they [19] extended the analysis by considering the heat 

transfer characteristics. Very recently Ali et al. [20] studied the peristaltic motion of third grade fluid 

in a curved channel.  

    The main purpose of this current investigation is to discuss the induced magnetic field, heat 

transfer, mass transfer and  permeable walls effects on the peristaltic flow of  J-S fluid in 

acurvedchannel. Hence the Johnson-Segalman fluid in a curved channel with flexible permeable 

walls is considered. The relevant equations are modeled first time. Series solutions are developed for 

small Weissenberg number. Graphs for the interesting quantities are plotted and interpreted. 

 

2. Mathematical modeling 

 

     Consider the flow of an incompressible J-S fluid in a curved channel of radius R* and uniform 

thickness 2d1 coiled in a circle with centre o ( see Fig. 1). We denote axial and radial directions by x 

and r. Here u and v are the components of velocity in the axial and radial directions respectively.The 

wave shapes are 

 

1

2π
r = ± η(x,t)= ± d +asin (x - ct) ,

λ

 
 
 

                                                                                                   (1) 

Where c is the wave speed and a and λ are the wave amplitude and wavelength respectively. 

     The equations which can govern the flow are: 
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The energy equation becomes  
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and concentration field satisfies 
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The Cauchy stress tensor τ in a Johnson-Segalman fluid is : 

 

2 , τ D S  

1+ + ( - ξ ) + ( - ξ ) = 2η ,Td
m

dt
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Where the symmetric (D) and skew symmetric (W) parts of velocity gradient are  
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The above relations yield 
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Where * */ / / / ( ) /d dt t v r uR r R x           is the material time derivative, P the pressure, μ 

and 
1

 are the viscosities, m the relaxation time, ρ the density, R* the curvature parameter, 
1
  the 

elastic tension,  m1 the mass per unit area, d the coefficient of viscous damping, D and W are the 

symmetric and skew symmetric parts of velocity gradient, ξ is the slip parameter and Sxr, Srr and Sxx 

and the components of an extra stress tensor S. 

     The boundary conditions can be written as  
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Eqs. (3)-(10) and (11) become 
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With the boundary conditions 

u 0, 0, 0 at (1 sin 2 ( )) ,r x t                                                                             (19) 

 
2 23 3

1
1 2 33 2

1

( ) 2

( )

r k u k v u k v
k E E E

x x t t x r r r k x r k r k r x

  


 

         
                          

 

1

1 1

2( )( )

( ) ( )

e rx rx xxS S Sr kR r k u u uk u uv k
v

t r r k x r k r r k r k x

  


   

       
                     

 

 (20) 

 

 

Note that the continuity Eq. (2) is satisfied identically, ϵ(=a/d1) isthe amplitude ratio, δ(=d1/λ) the 

wave number, k the dimensionless curvature parameter, Re (=cρd1/η1) the Reynolds number, 

We(=mc/d1) the Weissenberg number, Da(=α/𝑑1
2) the Darcy number, M (=√𝜎/𝜂1𝐵0𝑑1)  the Hartman 

number, Pr (=𝜇𝐶𝑝/𝜅) the Prandtl number, E (= 𝑐2 𝐶𝑝𝑇0)⁄  the Eckert number, Sc (= 𝜇 𝜌𝑑)⁄  the 

Schmidt number, Sr (= 𝜌𝑇0𝐷𝐾𝑇 𝜇𝑇𝑚𝐶0)⁄  the Soret number, 𝐵𝑟(= 𝐸𝑃𝑟) the Brinkman number and 
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3 𝜆3𝜂1)⁄ , 𝐸3(= 𝑑𝑑1
3 𝜆2𝜂1)⁄  represents the non-dimensional 

elasticity parameters. In particular, rigid nature of the wall is explained by the parameter E1, which 

depends upon the wall tension, E2 gives the stiffness property of the wall and E3 describes the 

dissipative feature of the wall. For E3 = 0, the wall moves up and down with no damping force on it. 

This situation corresponds to the case of elastic walls. If ψ(x,y, t) is the stream function then writing 
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From Eqs. (27)-(29) one has  
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2. Solution procedure 
 

      Different from the work reported in [21], in which the authors have obtained the exact solutions, 

here the differential system is strongly non-linear and cannot be solved exactly. We therefore first 

proceed for the perturbation solution and write streame function, stress components, temperature 

distribution, concentration field and heat transfer coefficient as: 
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3.2. First order system  
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Putting the zeroth order solution expressions into first order system and then solving the resulting 

problems we have 
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Note that γ ≈ 0.5 denotes Euler’s constant for the Bessel function of the first kind of order first. 
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By using the MATHEMATICA program and the boundary conditions given in equations (42) and 

(52), we have the constants  𝑐1, 𝑐2, … , 𝑐12.  

 

       
 

 

  

 

      
 

 

   

 

4. Results and discussion 

 

      Our interest in this section is to study the variation of various parameters on the axial velocity 𝑢 =
 𝑢0 + 𝑊𝑒

2𝑢1 =  −𝜓0𝑟 − 𝑊𝑒
2𝜓1𝑟, stream function ψ, temperature θ, concentration ϕ and heat transfer 

coefficient Z. In particular, the effects of compliant wall parameters (E1,E2 and E3), Brinkman number 

Br , Schimdt number Sc , curvature parameters k , Weissenberg number We , Hartman number M , 

Darcy number Da and slip parameter ξ have been disclosed. 

      Fig.2 shows the behavior of parameters involved in the axial velocity u. Fig.2a indicates that the 

axial velocity increases by increasing Da. This Fig. also shows for small curvature and the axial 

velocity is not symmetric about the centre line of the channel. Fig.2b describes the behavior of 

curvature parameter k on the velocity. It is found that velocity increases near the lower wall of the 

channel when there is an increase in the curvature parameter k. Fig.2c describes the behavior of 

compliant wall parameters (E1,E2 and E3) on the velocity. It is found that velocity decreases with an 

increase in E3 . The axial velocity is increasing function of E1 and E2. The variation of Hartman 

number M on u is shown in Fig.2d. We notice that velocity profile is not symmetric about the central 

line of the channel due to curvature and we notice that axial velocity decreases with an increase in M. 

      Fig.3 indicates the behavior of parameters appearing in the temperature distribution. Fig.3a shows 

that the magnitude of temperature increases as We increases.It is further noticed.  
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Fig. 2a. variation of Da on u when E1= 0.05; E2= 0.04; 

E3= 0.01; ϵ = 0.2; k=1.5; x = -0.2; t = 0.1; 𝜂1 = 0.1;    

μ = 0.1; ξ = 1.5; We = 0.1; γ = 0.5. 
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Fig. 2b. variation of k on u when E1= 0.05; E2= 0.03; 

E3= 0.01; ϵ = 0.1; Da =1; x = -0.2; t = 0.1; 𝜂1 = 0.1;    

μ = 0.1; ξ = 1.3; We = 0.1; γ = 0.5. 
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Fig. 2c. variation of compliant wall parameters  on u 

when ϵ = 0.2; k=1.5; x = -0.2; t = 0.1; 𝜂1 = 0.1;  

μ = 0.1; M = 1; Da = 1; ξ = 1.5; We = 0.1; γ = 0.5. 
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Fig. 2d. variation of M on u when E1= 0.05; E2= 0.04; 

E3= 0.01; ϵ = 0.2; Da =1; x = -0.2; t = 0.1; 𝜂1 = 0.1;    

μ = 0.1; ξ = 1.5; k= 1.5; We = 0.1; γ = 0.5. 
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Fig. 3a. variation of We on θ  when E1= 0.4; E2= 0.04; 

E3= 0.1; ϵ = 0.15; k=1.5; x = -0.2; t = 0.1; 𝜂1 = 0.6;    

μ = 0.5; M = 1; Da = 1; ξ = 1.9; Br = 0.5; γ = 0.5. 

Fig. 3b. variation of Br on θ  when E1= 0.4; E2= 0.03; 

E3= 0.1; ϵ = 0.15; k=1.5; x = -0.2; t = 0.1; 𝜂1 = 0.8;   

M =1; Da =1;  μ = 0.6; ξ = 1.9; We = 0.1; γ = 0.5. 
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Fig. 3c. variation of compliant wall parameters  on θ 

when ϵ = 0.15; k=1.5; x = -0.2; t = 0.1; 𝜂1 = 0.8; μ = 0.5; 

M = 1; Da = 1; ξ = 1.9; Br = 0.5; We = 0.1; γ = 0.5. 

Fig. 3d. variation of M on θ when E1= 0.5; E2= 0.04; 

E3= 0.01; ϵ = 0.15; Da =1; x = -0.2; t = 0.1; 𝜂1 = 0.8;    

μ = 0.6; ξ = 1.9; k= 1.5; Br = 0.5; We = 0.1; γ = 0.5. 
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Fig. 3e. variation of Da on θ when E1= 0.4; E2= 0.03; 

E3= 0.1; ϵ = 0.15; k=1.5; x = -0.2; t = 0.1; 𝜂1 = 0.8;    

μ = 0.6; ξ = 1.9; M =1; Br = 0.5; We = 0.1; γ = 0.5. 

          k = 1.4  
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Fig. 3f. variation of k on θ when E1= 0.4; E2= 0.03; 

E3= 0.1; ϵ = 0.15; Da=1; x = -0.2; t = 0.1; 𝜂1 = 0.8;     

μ = 0.6; ξ = 1.9; M =1; Br = 0.5; We = 0.1; γ = 0.5. 
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Fig.3b illustrates that the temperature increases when Brinkman number increases. It is shown in 

Fig.3c that temperature increases with an increase of E1 and E2 and decreases with the increase of E3 . 

Fig.3d discusses the behavior of Hartman number M which shows that temperature decreases with an 

increase in M. Fig.3e depicts that θ increases as the tilt of the temperature profile is towards right. 

Fig.3f depicts that temperature decreases near the lower wall of the channel and increases in the other 

part of the channel when curvature parameter increases. 

      Fig.4 represents the behavior of various parameters on the concentration distribution. It is 

observed from Fig.4a that the concentration decreases as Br increases. Fig.4b shows that 

concentration distribution increases with an increase of  E1,E2 and E3 in curved channel. Fig.4c 

illustrates that concentration increases when there is an increase in Hartman number M. Fig.4d 

discusses the behavior of Darcy number Da which shows that concentration decreases with an 

increase in Da . Fig.4e shows that concentration distribution decreases near the upper wall of the 

channel with an increase in k. Fig.4f  illustrates that concentration decreases when there is an increase 

in Schmidt number Sc. 
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Fig. 4a. variation of Br on ϕ when E1= 0.4; E2= 0.03; 

E3= 0.1; ϵ = 0.15; k=1.5; x = -0.2; t = 0.1; 𝜂1 = 0.8;   

M =1; Da =1;  μ = 0.6; ξ = 1.9; We = 0.1; Sc = 1; Sr = 1; 

γ = 0.5. 

            E1,E2,E3= 0.2, 0.1, 0.1  
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Fig. 4b. variation of compliant wall parameters  on ϕ 

when ϵ = 0.15; k=1.5; x = -0.2; t = 0.1; 𝜂1 = 0.8; μ = 0.5; 

M = 1; Da = 1; ξ = 1.9; Br = 0.5; We = 0.1 Sc = 1; Sr = 1;; 

γ = 0.5. 
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Fig. 4c. variation of M on ϕ when  E1= 0.5; E2= 0.04;  

E3= 0.01; ϵ = 0.15; Da =1; x = -0.2; t = 0.1; 𝜂1 = 0.8;        

μ = 0.6; ξ = 1.9; k= 1.5; Br = 0.5; We = 0.1; Sc = 1; Sr = 1;              

γ = 0.5. 

 

Fig. 4d. variation of Da on ϕ when E1= 0.4; E2= 0.03; 

E3= 0.1; ϵ = 0.15; k=1.5; x = -0.2; t = 0.1; 𝜂1 = 0.8;    

μ = 0.6; ξ = 1.9; M =1; Br = 0.5; We = 0.1; Sc = 1;       

Sr = 1; γ = 0.5. 
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Fig. 4e. variation of k on ϕ when E1= 0.4; E2= 0.03;   

E3= 0.1; ϵ = 0.15; Da=1; x = -0.2; t = 0.1; 𝜂1 = 0.8;       

μ = 0.6; ξ = 1.9; M =1; Br = 0.5; We = 0.1; Sc = 1;          

Sr = 1; γ = 0.5. 

 

Fig. 4f. variation of Sc on ϕ when E1= 0.4; E2= 0.03;   

E3= 0.1; ϵ = 0.15; Da=1; k = 1.5; x = -0.2; t = 0.1; 𝜂1 =
0.8;  μ = 0.6; ξ = 1.9; M =1; Br = 0.5; We = 0.1;    Sr = 1; 

γ = 0.5. 
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Fig. 5a. variation of We on Z when E1= 0.05; E2= 0.04;   

E3= 0.01; ϵ = 0.15; Da=1; ; k = 1.5 x = -0.2; t = 0.1; 𝜂1 =
0.6; μ = 0.5; ξ = 1.8; M =1; Br = 0.5; γ = 0.5. 
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Fig. 5b. variation of Br on Z when E1= 0.05; E2= 0.04;   

E3= 0.01; ϵ = 0.15; Da=1; k = 1.5; x = -0.2; t = 0.1; 

𝜂1 = 0.6; μ = 0.5; ξ = 1.8; M =1; We = 0.01; γ = 0.5. 
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Fig. 5c. variation of k on Z when E1= 0.05; E2= 0.04;   

E3= 0.01; ϵ = 0.15; Da=1; x = -0.2; t = 0.1; 𝜂1 = 0.6;     

μ = 0.5; ξ = 1.8; M =1; Br = 0.5; We = 0.01; γ = 0.5. 

Fig. 5d. variation of ξ on Z when E1= 0.05; E2= 0.04;   

E3= 0.01; ϵ = 0.15; Da=1; x = -0.2; t = 0.1; 𝜂1 = 0.6;     

μ = 0.5; M =1; Br = 0.5; We = 0.01; γ = 0.5. 
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Fig.5 presents the behavior of involved parameters in heat transfer coefficient Z. Fig.5a shows that 

the absolute value of heat transfer coefficient decreases when We increases. Fig.5b depicts that Z 

increases by increasing Br. Fig.5c shows that the heat transfer coefficient increases with an increas in 

curvature parameter. Fig.5d depicts that the heat transfer coefficient decreases with an increase in slip 

parameter. Fig.5e shows that the heat transfer coefficient  increases with an increase in Darcy 

number. Fig.5f depicts that the heat transfer coefficient decreases with an increase in Hartman 

number. 

      Fig.6 indicates  the behavior of parameters in the stream function. Fig.6a and b show that the 

bolus increases with an increase in We . Fig.7a and b are plotted to study the behavior of curvature 

parameter. This Fig. shows that the size of bolus decreases when M  increases. Fig.8a and b illustrates 

that the bolus increases with an increase in Da. 
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Fig. 5e. variation of Da on Z when E1= 0.05; E2= 0.04;   

E3= 0.01; ϵ = 0.15; k =1.5; x = -0.2; t = 0.1; 𝜂1 = 0.6;     

μ = 0.5; ξ = 1.8; M =1; Br = 0.5; We = 0.01; γ = 0.5. 

 

          M = 1  

          M = 1.5  

          M = 2 

Fig. 5f. variation of M on Z when E1= 0.05; E2= 0.04;   

E3= 0.01; ϵ = 0.15; Da = 1; k =1.5; x = -0.2; t = 0.1; 

𝜂1 = 0.6; μ = 0.5; ξ = 1.8; Br = 0.5; We = 0.01; γ = 0.5. 

 

Fig.6. Variation of We on ψ when E1= 0.02; E2= 0.01; E3= 0.1; ϵ = 0.1; t = 0; ξ = 0.1; 𝜂1= 0.1; μ = 0.1; k = 1.7; M = 1; 

Da = 1; γ = 0.5;   (a): We = 0.00; (b): We = 0.04. 
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5. Concluding remarks 

 

      In this study the effects of heat and mass transfer and induced magnetic field on the peristaltic 

transport of the Johnson-Segalman fluid in a porous curved channel are discussed. Coupled equations 

are solved by employing perturbation method. The following observation have been found: 

 Not symmetry in the profiles of  u, θ, ϕ and Z disturbed because of curvature effects. 

 The magnitude of velocity u and  temperature θ increasing functions of  k and Da while it 

decreases when M  increases. 

Fig.7. Variation of M on ψ when E1= 0.02; E2= 0.01; E3= 0.1; ϵ = 0.1; t = 0; ξ = 0.1; 𝜂1= 0.1; μ = 0.1; k = 1.7; We=0.01; 

Da = 1; γ = 0.5;  (a): M = 0 ; (b): M = 1. 

Fig.8. Variation of Da on ψ when E1= 0.02; E2= 0.01; E3= 0.1; ϵ = 0.1; t = 0; ξ = 0.1; 𝜂1= 0.1; μ = 0.1; k = 1.7;We=0.01; 

M = 1; γ = 0.5;  (a): Da = 1 ; (b): Da = 2. 
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 The axial velocity in J-S fluid is larger than the Newtonian fluid. Due to curvature the 

velocity profile is tilted towards left whereas temperature and concentration profiles tilted 

towards right.  

 The bolous size in Johnson-Segalman fluid is greater than the viscous fluid. 

 The parameters appearing in the temperature distribution have opposite effect on the 

concentration distribution. 
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